LITERATURE CITED

1. N. N. Zenger, Design of Pipelines for Permafrost Conditions (Experience at Noril'sk) [in Russian],
Stroiizdat, Moscow (1964).

2. V. P. Stegantsev, Problems of the Far North [in Russian], No. 10, Izd. Akad. Nauk SSSR, Moscow (1964).

3. P. A, Bogoslovskii, Ice Conditions Occurring in Water-Station Pipelines [in Russian], Gosénergoizdat,
Moscow — Leningrad (1950),

4. J. M. Savino and R. Siegel, Int. J. Heat Mass Transfer, 12, No. 7 (1969).

5. C. Lapadula and W. K. Mueller, Int. J. Heat Mass Transfer, 9, 702 (1966).

6. E. P. Martinez and R. T. Beabubouef, Canad. J. Chem. Eng., 50, No. 4 (1972).

7. M. N, Osisik and J. C. Mulligan, Trans. ASME, J. Heat Trans—f?er, 91, Ser. C, No. 3 (1969).

8. N. Z. Gusev et al., Heat Calculations on Water Pipes Buried in Frozen Soil [in Russian], Izd. Irkutsk.

Politekh. Inst., Irkutsk (1971).
9. 8. S. Kutateladze and Yu. N. Krinchitskii, in: District-Heating Problems [in Russian], ONTI, Leningrad—

Moscow (1936).

10. L. M. Al'tshuller, Zh. Tekh, Fiz., 29, No. 2 {1959).

11. N. Z, Frenkel', Hydraulics [in Russian], Gosénergoizdat, Moscow — Leningrad (1956).

12. B. A. Krasovitskii and F. S. Popov, Inzh. Fiz. Zh., 31, No. 2 (1976).

13. B. A. Krasovitskii and F. S, Popov, Inzh. Fiz. Zh,, —2§, No. 6 (1975).

14. L. S. Leibenzon, Handbook on Petroleum Mechanics, Part 1, Hydraulics [in Russian], GNTI, Moscow —
Leningrad (1931).

E’LECTRICAL SIMULATION OF THREE-DIMENSIONAL
TEMPERATURE FIELDS OF ANISOTROPIC BODIES
OF COMPLEX SHA PE

O. I. Bukovskaya, N. F. Dekhtyareva, UDC 536.12:621.38
and L. A. Kozdoba

A procedure is described and results are presented of mathematical modeling of three-
dimensional temperature fields on hybrid electrical combination simulators with inte-

grated microcircuits.

The demands for more accurate thermal calculations increase every year. An increase in the reliability
and an improvement of the quality of the elements are inseparably linked with optimization with respect to the
thermal state in transient and steady-state regimes. These requirements force one to seek new methods and
to solve two- and three-dimensional heat-conduction problems for bodies of complex shape with variable time-
and temperature-dependent coefficients in both the basic equation and the boundary conditions of the mathemati-
cal model, For the most complex problems the only methods for investigating temperature distributions in
three-dimensional structures involve numerical solutions on analog computers with a processor in the form of
a network or a combination electrical model [1, 2]. These models are a subroutine of specialized hybrid com-
puters permitting complete automation of the solution of field theory problems described by second-order par-

tial differential equations [3].

In microminiature elements of electronic equipment similar to those shown in Fig. 1, three-dimensional
temperature fields can be obtained only by mathematical modeling. The introduction of any temperature-
measuring device leads to an inadmissible distortion of the temperature field, particularly inside the micro-
element. The thermal circuit of a hybrid integrated microcircuit is a typical example of a three-dimensional
heat-conduction problem for an anisotropic body of complex shape. The schematic diagram does not show the
leads. A special study with three-dimensional electrical models [4] showed that under certain conditions the
effect of the leads on temperature fields can be neglected.
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Fig. 1. Thermal circuit of hybrid integrated microcir-
cuit: 1) cover; 2) air; 3) substrate; 4) adhesive; 5) flange;
a-f) characteristic points on inner and outer surfaces,
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Fig. 2. Schematic diagrams of three-dimensional network and
combination models. Discrete resistors (R) , Ry) along the z
axis are not shown. The dots on the five-layer models are
nodes in the heat-source region.

TABLE 1. Variations of Solutions on Various Types of
Network and Combination Models.

Variant e of No, of No. of nodes

No. nTK;%el planes in a plane Oy O7s g
1 R—R 1 48 Different
2 K—R 1 19 »
3 K—R 1 19 Same
4 K—R 1 8 Different
5 E—R 1 8 -
7 K 3 8, 8; 8 -
8 K 5 8; 8; 8, 8;8 -

Note. K:k=2:1. K and k are different scale combina-
tion models; R is the network resistance; the number of
the variation is the number of the curve in Fig. 3.

The mathematical model of the thermal conditions of a three-dimensional anisotropic structure can be
described by the following system of equations in rectangular coordinates;

d aT oT
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A microcircuit is generally cooled from both sides. Therefore, condition (4) holds only on the planes of
symmetry for the quarter of the circuit considered. On all the remaining surfaces, condition (3) holds. At the
surfaces of contact of the circuit elements (Fig. 1), matching conditions are specified in the form of boundary
conditions of ideal contact,

ar oT
T ;=Ts5.6 —My o |, = _)"i_i.iw s~ (5
Specifying ideal contact conditions is optional. The thermal contact resistance and the heat release at the con-
tacting surfaces can be taken into account,
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Fig. 3. The dependence of ®y; (deg-cm?/W) on the direction
of heat removal for various types of models and operating
positions of the microcircuit, See Table 1 for explanation of
numbers on curves.
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Fig. 4. Change of relative temperature ® (deg-cm?/W) as a func-
tion of a (W/ m® - deg) at the center and on the periphery of various
surfaces of a microcircuit ¢;=1.3¢,27=0.7¢,ag = a); I) outer sur-
face of cover; II) upper surface of substrate; ITI) lower surface of
flange; a~f) correspond to points a-f of Fig. 1.
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In our casec varied from 5 to 50,000 W/m?- °K, which enabled us to simulate cooling conditions from
natural convection to semiconductive cooling (boundary conditions of the first kind). In order to take account of
the direction of heat removal (from above, from below, or from the side) it was assumed that the microcircuit
operates in the position shown in Fig. 1 withay =1.3a,7=0.7a, andag=a. In our case Jjj, Cj, pj, Avj, and a
are functions of the coordinates, the time, and the temperature; T, is a function of coordinates and time. The
layer of air between the cover and substrate is taken into account. The materials of the substrate, cover,
flange, adhesive, and air layer have widely different thermophysical properties, differing by one to two orders
of magnitude. The heat source is distributed uniformly over a given volume or according to the law ay(xi, 7).
Special investigations with similar structures having relatively small thermal resistances across the thickness
showed that the heat release can be simulated also by a surface heat source properly distributed over a given
area S of the substrate. In this case the mathematical model (1)-(5) has boundary conditions of the second kind,

oT
on

g=—"2 (6)
The three-dimensional element in Fig. 1, which is one quarter of the microcircuit, consists of elementary
plates — layers in which the thermal resistances along the vertical (z axis) are several times smaller than the
thermal resistances in horizontal planes parallel to the x0y plane. In this case it is reasonable to construct a
combination electrical model with electrically conducting paper and a network of chmic resistors so that the
planes of electrically conducting paper simulate the electrical (i.e., the corresponding thermal) resistances in
horizontal planes. A plane of electrically conducting paper can replace a whole plate element of the micro-
circuit or simulate one of the elementary layers into which the cover, air layer, etc., are divided. Special
methodical investigations showed that it is sufficient to take one plane (Fig. 1) for each element 1-5 of the
microcircuit. Moreover, by taking account of the thermal resistance of the air layer along the z axis, it turns
out that it is satisfactory to replace only the substrate, adhesive, and flange by such planes of electrically con-
ducting paper.*

Figure 2 shows schematic diagrams of three~dimensional models having from one to five planes (a-h).
We note that even the model which has only one plane is a three-dimensional model. In it, discrete wire-wound
resistors are used to simulate thermal resistances for heat conduction along the z axis (Rj ) and thermal re-
sistances for external heat transfer (Ry,) at the upper and lower outer surfaces of the microcircuit. In this
case, just as in all other cases involving a combination of layers of materials with different A, ¢, and p, the
thermophysical properties simulated in such a three-dimensional model are the equivalent combined properties,
different along different axes. These equivalent properties }‘eq’ceqv and pgq are calculated from relations
given, for example, in [5]. Incidentally, it is appropriate to note that electrical models similar to those de-
scribed in this article have been used successfully to determine Aeqs particularly when the material consists
of elements of irregular shape, and the coefficients A of the elementary components are different in different
directions, not only along different coordinate axes, In each plane (Fig. 2) the number of nodes was varied
depending on the likely temperature gradients. The spatial intervals (elementary areas and volumes) were de-
creased as the heat source was approached. The number of nodes in a plane was varied from 8 to 49, The
parameters of the combination model were calculated from expressions derived for asymmetric networks and
combination models with nonuniform divisions [1]:

" Img mpdt mg
Ry=——; Ri=——; Ry = ;
» }\/sz * cpv R aS
(7)
qu — (Vn —‘ Vm) mg ; Rq: (VM _ Vm) mp .
g umy qSmy

In Egs. (7), 1, S, and v are elementary lengths, areas, and volumes which are generally different for each node
of the network. The procedure for solving field theory problems on asymmetric networks (networks with non-
uniform divisions) is similar to the procedure used in the method of finite elements, In the finite-element
method the conservation laws are generally written in variational form, but in electrical models with asym-~
metric divisions they are written in balance form. The parameters of network or combination models with
capacitive and/or current-carrying elements were calculated from the following expressions:

14, = gomy/mg; 1, = qSmy/mg; @

8
C =cpom /mg; m.= RC/Rcpv.

* From now on we use the word planes to mean planes of electrically conducting paper.
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The dots in Fig. 2e-h show the locations of the nodes in the various planes of the five-layer model in regions
above and below the source. A similar division of a plane into elements and a procedure for connecting the
nodes for unequal elementary areas in parallel planes permits a sharp decrease in the number of nodes in the
model while maintaining a given accuracy. Figure 3 shows the maximum relative temperature @p=(TM — Tg)/
qy for one value of @ as a function of the direction of heat removal, the type of model, the number of planes,

and the number of nodes in a plane. A model consisting of a network of resistors is denoted by R—R. A model
combining an R—R network (region A of Fig. 2a) and electrically conducting paper (region B of Fig. 2a) is de-
noted by K—-R or k—R, depending on the scales of the combination models (k:K=1:2). The data of Fig. 3 show
that the results of the three-dimensional model with three planes are close to those of the model with five
planes. In the three-layer model the values of R) are taken into account in all directions only in the substrate,
adhesive, and flange; R;x and R;, y are not taken into account in air and the cover. In the five-layer model R)
is taken into account for air and the cover in the horizontal plane. A comparison of data for the three- and
five-layer models indicates that because of the small thermal conductivity of air one could take account only

of R, z for air and R)z for the cover. Of course, the value used for the thermal conductivity of air took account
of convection in the thin layer.

As noted above, the values used for o, 07, and ag depended on the operating position of the microcircuit:
oy =130, 07 = 0.7a, and ag=c. Figure 3 shows that the value of @) depends on the direction of heat removal
(in all directions, upward, downward, toward the side, etc.), the type of model, the number of planes, the num-
ber of nodes in a plane, and whether the values of o are identical or depend on the operating position of the
microcircuit. Special investigations showed that when a is varied from 5 to 50,000 W/m?- °K, the conclusions
about the optimum direction of heat removal are changed because of the change of the ratios of R) in various
directions and R, . Mathematical modeling of three-dimensional temperature fields on electrical simulators
enables one not only to obtain interesting heat-engineering results, but also to optimize with respect to accuracy,
solution time, cost of solution, and finite-difference models of Egs. (1)-(6) when all-purpose digital com puters
are used to solve the equations. Models which give maximum accuracy for a minimum number of nodes are
defined as optimal. The choice of accuracy depends on the particular thermal problem. It is quite clear that
to optimize a product or its operating conditions the accuracy of the calculation must be much higher (an error
of no more than + 1%) than in sketchy designs (admissible error + 10-25%).

Figure 3 shows also that complicating the model by increasing the number of planes or the number of
nodes in a plane does not necessarily affect the maximum temperature. Analysis of three-dimensional fields
by a microcircuit showed that this indeterminacy arises from the anisotropy of properties and from the variety
of ratios of internal and external thermal resistances which is characteristic of such products. Particular
attention must be paid to the choice of the thermal circuit for variations of @ and q and changes in the direc-
tions of heat removal. In a number of cases for heat removal from one side, not only two-dimensional, but
also one-dimensional heat-conduction problems can be studied on the mathematical model.

A comparison of curves 2 and 3 of Fig. 3 shows that ® is affected by the transition from constant
values of @ on the outer cooled surfaces to different values of @, taking account of the operating position of the
microcircuit (o =1.30,7=0.7a, andag=0c). Of course, the magnitude of this effect depends on the direction
of heat removal. Study of three-dimensional temperature fields has established that for cooling from one side
both the choice of the direction of heat removal (it is desirable to cool the side with minimum R)) and the value
of o are particularly important., For values of @ which are characteristic for natural convection, a change in
a by 10-30% has a definite effect on @y,

It is typical that an increase in the number of planes and nodes does not ensure an increase in the ac-
curacy of the solution. For example, a model with two planes (curve 6 of Fig. 3) gives values of @) lying be-
tween the values for the one- and five-layer models. Such "paradoxes" occur rather frequently in numerical
studies of complex heat-conduction problems [6]. In the present case this paradox arises from the change in
the ratio of the thermal resistances when the anisotropic volume is divided into 1, 2, 3, and 5 elementary
layers. & can be seen from Fig. 3 that the changes in ®p1 are substantial and depend on the direction of heat
removal. Changes in the direction of heat removal cause radical changes in thermal resistances from the
source to the cooling surfaces.

The removal of heat in only one direction (especially upwards or laterally) leads to a catastrophic in~
crease in ®yy. This results not only in a sharp decrease in the reliability of the element [7], but can lead to
prompt breakdown even when operating at powers 5-10% of nominal.

The determination of three-dimensional temperature fields on combination electrical models enables one

to estimate the temperature drops across the outer surfaces of a microcircuit whether they are cooled or not.
Figure 4 shows temperature changes at certain characteristic internal points : - «- region of the heat source,
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on the substrate, and on the upper and lower surfaces of a microcircuit. It is clear that the temperatures on
the outer surfaces vary considerably from the center to the periphery. These drops make a substantial change
in the so-called thermal resistance of the microcircuit. The thermal resistance of the whole microcircuit, de-
termined experimentally or calculated by assuming equality of the temperatures of the outer surfaces of the
elements of electronic equipment, are considerably different from the actual values. This difference increases
with increasing heat-transfer coefficients (cf. Fig. 4). Figure 4 shows the effect of & on @ for cooling from all
sides. Similar data are obtained in other variations of heat removal, Optimization of the elements with respect
to temperatures and optimization of operating conditions must be performed by starting from the three-dimen-
sional temperature distributions. Only in this way is it possible to achieve a sharp increase in the reliability
of apparatus, which changes substantially with each degree rise in the maximum temperature. According to
statistical data [7], for each 10° rise in temperature the reliability on the average decreases by 25%. There-
fore, electrical simulators permitting highly accurate investigations of three-dimensional temperature fields
under various conditions are indispensible in the design of elements of electronic apparatus.

NOTATION

T, temperature; V, voltage; C, capacitance; R, resistance; I, current; mg =Re/RT, My = (Vmax = Vmin)/
(Tmax = Tmin)» Mg =7¢/7 T, scales of electrical and thermal quantities: resistances, potentials, and times;
i=1, 2, 3; j, number of different components; m, number of node. Indices: u, upper; !, lower; s, side; T,
thermal; e, electrical; M, maximum; s, surface; a, ambient.
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